

Blue Cross Blue Shield of Massachusetts is an Independent Licenses of the Blue Cross and Blue Shield Association

Medical Policy

Responsive Neurostimulation for the Treatment of Refractory Focal Epilepsy

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 716

BCBSA Reference Number: 7.01.143

NCD/LCD: NA

Related Policies

- Vagus Nerve Stimulation, #474
- Deep Brain Stimulation, #473

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Responsive neurostimulation may be considered <u>MEDICALLY NECESSARY</u> for patients with partial epilepsy who meet ALL of the following criteria:

- Are 18 years or older;
- Have a diagnosis of focal seizures with 1 or 2 well-localized seizure foci identified;
- Have an average of 3 or more disabling seizures (eg, motor focal, complex focal, or secondary generalized seizures) per month over the prior 3 months;
- Are refractory to medical therapy (have failed 2 or more appropriate antiepileptic medications at therapeutic doses);
- Are not candidates for focal resective epilepsy surgery (eg, have an epileptic focus near eloquent cerebral cortex; have bilateral temporal epilepsy); and
- Do not have contraindications* for RNS placement.

*Contraindications for responsive neurostimulation device placement include 3 or more specific seizure foci, presence of primary generalized epilepsy, or presence of a rapidly progressive neurologic disorder.

Responsive neurostimulation is considered **INVESTIGATIONAL** for all other indications.

Prior Authorization Information

Inpatient

• For services described in this policy, precertification/preauthorization **IS REQUIRED** if the procedure is performed inpatient.

Outpatient

• For services described in this policy, see below for situations where prior authorization might be required if the procedure is performed outpatient.

	Outpatient
Commercial Managed Care (HMO and POS)	Prior authorization is not required .
Commercial PPO and Indemnity	Prior authorization is not required .
Medicare HMO Blue SM	Prior authorization is not required.
Medicare PPO Blue SM	Prior authorization is not required .

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes

There is no specific CPT code for this procedure.

Description

Epilepsy Treatment

Medical Therapy for Seizures

Standard therapy for seizures, including focal seizures, includes treatment with one or more of various antiepileptic drugs, which include newer antiepileptic drugs, such as oxcarbazepine, lamotrigine, topiramate, gabapentin, pregabalin, levetiracetam, tiagabine, and zonisamide.^{1,} Currently, response to antiepileptic drugs is less than ideal: one systematic review comparing newer antiepileptic drugs for refractory focal epilepsy reported an overall average responder rate in treatment groups of 34.8%.^{1,} As a result, a substantial number of patients do not achieve good seizure control with medications alone.

Surgical Therapy for Seizures

When a discrete seizure focus can be identified, seizure control may be achieved through resection of the seizure focus (epilepsy surgery). For temporal lobe epilepsy, a randomized controlled trial has demonstrated that surgery for epilepsy was superior to prolonged medical therapy in reducing seizures associated with impaired awareness and in improving quality of life.², Surgery for refractory focal epilepsy (excluding simple focal seizures) is associated with 5-year freedom from seizure rates of 52%, with 28% of seizure-free individuals able to discontinue antiepileptic drugs.³, Selection of appropriate patients for epilepsy surgery is important, because those with nonlesional extratemporal lobe epilepsy have worse outcomes after surgery than those with nonlesional temporal lobe epilepsy.⁴, Some patients are not candidates for epilepsy surgery if the seizure focus is located in an eloquent area of the brain or other region that cannot be removed without risk of significant neurologic deficit.

Neurostimulation for Neurologic Disorders

Electrical stimulation at one of several locations in the brain has been used as therapy for epilepsy, either as an adjunct to or as an alternative to medical or surgical therapy. Vagus nerve stimulation has been widely used for refractory epilepsy, following U.S. Food and Drug Administration (FDA) approval of a vagus nerve stimulation device in 1997 and 2 randomized controlled trials evaluating vagus nerve stimulation in epilepsy.^{5,} Although the mechanism of action for vagus nerve stimulation is not fully understood, vagus nerve stimulation is thought to reduce seizure activity through activation of vagal visceral afferents with diffuse central nervous system projections, leading to a widespread effect on neuronal excitability.

Stimulation of other locations in the neuroaxis has been studied for a variety of neurologic disorders. Electrical stimulation of deep brain nuclei (deep brain stimulation) involves the use of chronic, continuous stimulation of a target. It has been most widely used in the treatment of Parkinson disease and other movement disorders and has been investigated for treating epilepsy. Deep brain stimulation of the anterior thalamic nuclei was studied in a randomized control trial, the Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy trial, but deep brain stimulation is not currently approved by FDA for stimulation of the anterior thalamic nucleus ^{6,} Stimulation of the cerebellar and hippocampal regions and the subthalamic, caudate, and centromedian nuclei have also been evaluated for the treatment of epilepsy.^{5,}

Responsive Neurostimulation for Epilepsy

Responsive neurostimulation shares some features with deep brain stimulation but is differentiated by its use of direct cortical stimulation and by its use in both monitoring and stimulation. The responsive neurostimulation system provides stimulation in response to detection of specific epileptiform patterns, while deep brain stimulation provides continuous or intermittent stimulation at preprogrammed settings.

Development of the responsive neurostimulation system arose from observations related to the effects of cortical electrical stimulation for seizure localization. It has been observed that electrical cortical stimulation can terminate induced and spontaneous electrographic seizure activity in humans and animals.^{7,} Patients with epilepsy may undergo implantation of subdural monitoring electrodes for the purposes of seizure localization, which at times have been used for neurostimulation to identify eloquent brain regions. Epileptiform discharges that occur during stimulation for localization can be stopped by a train of neighboring brief electrical stimulations.^{8,}

In tandem with the recognition that cortical stimulation can stop epileptiform discharges was development of fast pre-ictal seizure prediction algorithms. These algorithms interpret electrocorticographic data from detection leads situated over the cortex. The responsive neurostimulation process thus includes electrocorticographic monitoring via cortical electrodes, analysis of data through a proprietary seizure detection algorithm, and delivery of electrical stimulation via both cortical and deep implanted electrodes in an attempt to halt a detected epileptiform discharge.

One device, the NeuroPace RNS® System, is currently approved by FDA and is commercially available.

Responsive Neurostimulation for Seizure Monitoring

Although the intent of the electrocorticography component of the responsive neurostimulation system is to provide input as a trigger for neurostimulation, it also provides continuous seizure mapping data (chronic unlimited cortical electrocorticography) that may be used by practitioners to evaluate patients' seizures. In particular, the seizure mapping data have been used for surgical planning of patients who do not experience adequate seizure reduction with responsive neurostimulation placement. Several studies have described the use of responsive neurostimulation in evaluating seizure foci for epilepsy surgery^{9,} or for identifying whether seizure foci are unilateral.^{10,11,}

This review does not further address use of responsive neurostimulation exclusively for seizure monitoring.

Summary

Responsive neurostimulation for the treatment of epilepsy involves the use of one or more implantable electric leads that serve both a seizure detection and neurostimulation function. The device is programmed using a proprietary algorithm to recognize seizure patterns from electrocorticography output and to deliver electrical stimulation with the goal of terminating a seizure. One device, the NeuroPace RNS® System, has U.S. Food and Drug Administration (FDA) approval for the treatment of refractory focal (formerly partial) epilepsy.

For individuals who have refractory focal epilepsy who receive responsive neurostimulation, the evidence includes an industry-sponsored randomized controlled trial, which was used for FDA approval of the

NeuroPace RNS® System, as well as case series. Relevant outcomes are symptoms, morbid events, quality of life, and treatment-related mortality, and morbidity. The randomized controlled trial was well-designed and well-conducted; it reported that responsive neurostimulation is associated with improvements in mean seizure frequency in patients with refractory focal epilepsy, with an absolute difference in change in seizure frequency of about 20% between groups, though the percentage of treatment responders with at least a 50% reduction in seizures did not differ from sham control. Overall, the results suggested a modest reduction in seizure frequency in a subset of patients. The number of adverse events reported in the available studies is low, although the data on adverse events were limited because small study samples. Generally, patients who are candidates for responsive neurostimulation are severely debilitated and have few other treatment options, so the benefits are likely high relative to the risks. In particular, patients who are not candidates for resective epilepsy surgery and have few treatment options may benefit from responsive neurostimulation. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Consensus input from clinical vetting recommended that responsive neurostimulation is medically necessary for a subgroup of patients with refractory focal epilepsy. Therefore, responsive neurostimulation may be considered medically necessary in patients with medication-refractory focal epilepsy who are not candidates for epilepsy surgery.

Policy History

Date	Action
6/2020	BCBSA National medical policy review. Description, summary and references
	updated. Policy statements unchanged.
5/2019	BCBSA National medical policy review. Description, summary and references
	updated. Policy statements unchanged.
6/2018	BCBSA National medical policy review.
	Policy clarified: partial epilepsy changed to focal epilepsy throughout text and title to
	be consistent with current terminology. Prior Authorization Information reformatted.
5/2017	New references added from BCBSA National medical policy.
5/2016	New references added from BCBSA National medical policy.
4/2015	New medical policy describing medically necessary and investigational indications.
	Effective 4/1/2015.

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

Managed Care Guidelines

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

References

- 1. Costa J, Fareleira F, Ascencao R, et al. Clinical comparability of the new antiepileptic drugs in refractory partial epilepsy: a systematic review and meta-analysis. Epilepsia. Jul 2011;52(7):1280-1291. PMID 21729036
- 2. Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. Aug 2 2001;345(5):311-318. PMID 11484687
- de Tisi J, Bell GS, Peacock JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet. Oct 15 2011;378(9800):1388-1395. PMID 22000136
- 4. Noe K, Sulc V, Wong-Kisiel L, et al. Long-term outcomes after nonlesional extratemporal lobe epilepsy surgery. JAMA Neurol. Aug 2013;70(8):1003-1008. PMID 23732844
- 5. Fridley J, Thomas JG, Navarro JC, et al. Brain stimulation for the treatment of epilepsy. Neurosurg Focus. Mar 2012;32(3):E13. PMID 22380854

- 6. Fisher RS. Therapeutic devices for epilepsy. Ann Neurol. Feb 2012;71(2):157-168. PMID 22367987
- 7. Kossoff EH, Ritzl EK, Politsky JM, et al. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia. Dec 2004;45(12):1560-1567. PMID 15571514
- 8. Anderson WS, Kossoff EH, Bergey GK, et al. Implantation of a responsive neurostimulator device in patients with refractory epilepsy. Neurosurg Focus. Sep 2008;25(3):E12. PMID 18759613
- 9. DiLorenzo DJ, Mangubat EZ, Rossi MA, et al. Chronic unlimited recording electrocorticography-guided resective epilepsy surgery: technology-enabled enhanced fidelity in seizure focus localization with improved surgical efficacy. J Neurosurg. Jun 2014;120(6):1402-1414. PMID 24655096
- 10. King-Stephens D, Mirro E, Weber PB, et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia. Jun 2015;56(6):959-967. PMID 25988840
- 11. Spencer D, Gwinn R, Salinsky M, et al. Laterality and temporal distribution of seizures in patients with bitemporal independent seizures during a trial of responsive neurostimulation. Epilepsy Res. Feb 2011;93(2-3):221-225. PMID 21256715
- 12. Food and Drug Administration. Summary of Safety and Effectiveness Data: RNS System 2013; https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100026b.pdf. Accessed March 4, 2020.
- 13. Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. Apr 2017;58(4):522-530. PMID 28276060
- 14. Kwan P, Arzimanoglou A, Berg AT et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010 Jun;51(6). PMID 19889013
- 15. Xue-Ping W, Hai-Jiao W, Li-Na Z et al. Risk factors for drug-resistant epilepsy: A systematic review and meta-analysis. Medicine (Baltimore). 2019 Jul;98(30). PMID 31348240
- Neuropace, Inc. RNS(R) System Physician Manual for the RNS(R) Neurostimulator Model RNS-320. Revised February 2020. https://www.neuropace.com/manuals/RNS System Physician Manual.pdf.Accessed March 5, 2020.
- 17. Morrell MJ, Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. Sep 27 2011;77(13):1295-1304. PMID 21917777
- 18. Heck CN, King-Stephens D, Massey AD, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. Mar 2014;55(3):432-441. PMID 24621228
- 19. Loring DW, Kapur R, Meador KJ, et al. Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia. Nov 2015;56(11):1836-1844. PMID 26385758
- 20. Meador KJ, Kapur R, Loring DW, et al. Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav. Apr 2015;45:242-247. PMID 25819949
- Cox JH, Seri S, Cavanna AE. Clinical utility of implantable neurostimulation devices as adjunctive treatment of uncontrolled seizures. Neuropsychiatr Dis Treat. Dec 2014;10:2191-2200. PMID 25484587
- 22. Gooneratne IK, Green AL, Dugan P, et al. Comparing neurostimulation technologies in refractory focal-onset epilepsy. J Neurol Neurosurg Psychiatry. Nov 2016;87(11):1174-1182. PMID 27516384
- 23. Bergey GK, Morrell MJ, Mizrahi EM, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. Feb 24 2015;84(8):810-817. PMID 25616485
- 24. Lee B, Zubair MN, Marquez YD, et al. A single-center experience with the neuropace rns system: a review of techniques and potential problems. World Neurosurg. Sep 2015;84(3):719-726. PMID 25940211
- 25. Child ND, Stead M, Wirrell EC, et al. Chronic subthreshold subdural cortical stimulation for the treatment of focal epilepsy originating from eloquent cortex. Epilepsia. Mar 2014;55(3):e18-21. PMID 24571166
- 26. Morris GL, 3rd, Gloss D, Buchhalter J, et al. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. Oct 15 2013;81(16):1453-1459. PMID 23986299